Global Neural Network Software
Market Report
2025
The global Neural Network Software market size is USD 23.7 billion in 2024. The Neural Network Software market will show the strongest growth with the compound annual growth rate (CAGR) of 32.3% from 2024 to 2031. This growth can be attributed to increasing dependence on automated technology.
The base year for the calculation is 2024. The historical will be 2021 to 2024. The year 2025 will be estimated one while the forecasted data will be from year 2025 to 2033. When we deliver the report that time we updated report data till the purchase date.
PDF Access: Password protected PDF file, Excel File Access: Quantitative data, PPT Report Access: For the presentation purpose, Cloud Access: Secure Company Account Access.
Share your contact details to receive free updated sample copy/pages of the recently published edition of Neural Network Software Market Report 2025.
According to Cognitive Market Research, the global Neural Network Software market size will be USD 23.7 billion in 2024 and will expand at the compound annual growth rate (CAGR) of 32.3% from 2024 to 2031.
North America held the major market share for more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031.
Europe accounted for a market share of over XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031.
Asia Pacific held a market share of around XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031.
Latin America had a market share of more than XX% of the global revenue with a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031.
Middle East and Africa had a market share of around XX% of the global revenue and was estimated at a market size of USD XX million in 2025 and will grow at a CAGR of XX% from 2025 to 2031.
2021 | 2025 | 2033 | CAGR | |
---|---|---|---|---|
Global Neural Network Software Market Sales Revenue | 121212 | 121212 | 121212 | 32.3% |
Base Year | 2024 |
Historical Data Time Period | 2021-2024 |
Forecast Period | 2025-2033 |
Market Split by Component |
|
Market Split by Type |
|
Market Split by Industry |
|
List of Competitors |
|
Regional Analysis |
|
Country Analysis |
|
Market Drivers: Increasing amount of spatial Data and Demand for Predictive Solutions Accelerating Market Growth | |
Market Restrains: Limited Expertise and Operational Challenges Hamper Neural Network Software Adoption | |
Market Trends: Cloud-Based Deployment Unlocks Scalable Growth Opportunities for Neural Network Software |
Report scope is customizable as we have a huge database of Neural Network Software industry. We can deliver an exclusive report Edition/Consultation as per your data requirements. Request for your Free Sample Pages.
Neural Network Software Market is Segmented as below. Particular segment of your interest can be provided without any additional cost. Download the Sample Pages!
According to Cognitive Market Research, the Neural Network Software Market Size will be USD XX Billion in 2023 and is set to achieve a market size of USD XX Billion by the end of 2031 growing at a CAGR of XX% from 2024 to 2031.
Neural network software refers to specialized tools and frameworks designed to develop, train, and deploy neural networks—computational models inspired by the human brain. These models form the backbone of deep learning and are essential in solving complex problems involving large datasets. Neural network software plays a significant role in areas such as data mining, predictive analytics, optimization, and visualization. For instance, platforms like TensorFlow and PyTorch allow developers and researchers to build sophisticated machine learning solutions that power everything from voice assistants to medical imaging systems.
In recent years, the rapid increase in spatial data generation has created a growing demand for advanced software capable of efficiently processing and analyzing this data. Neural network software addresses this need by offering powerful predictive tools that analyze past data to forecast future outcomes, helping organizations make informed decisions. Furthermore, the rising adoption of cloud-based neural network software offers enhanced scalability, cost-effectiveness, and flexibility—making these solutions more accessible and attractive to businesses of all sizes. These factors collectively contribute to the strong expansion of the neural network software market, opening new opportunities for innovation and growth across diverse sectors.
Key Drivers
Increasing amount of spatial Data and Demand for Predictive Solutions Accelerating Market Growth
One of the primary drivers of neural network software market growth is the increasing amount of spatial data. Spatial data refers to information tied to specific geographical locations and is collected through a variety of sources such as satellites, drones, sensors, mobile devices, and surveillance systems. This type of data plays a crucial role in sectors like urban development, environmental monitoring, agriculture, disaster management, and transportation. However, due to its complex structure, high dimensionality, and varied formats, traditional data processing techniques often struggle to handle spatial data efficiently.
This is where neural network software comes in. It leverages deep learning and AI to process, interpret, and visualize spatial data at scale. By recognizing patterns, extracting key features, and generating predictive insights, these tools empower users to make data-driven decisions and respond more effectively to emerging challenges. For instance, neural networks are used to analyze satellite images for precision farming or to model urban traffic flows for smart city planning. As the volume of spatial data continues to grow, the demand for powerful analytical tools like neural network software is also on the rise, driving market expansion.
Rising demand for predictive solutions boosting the Neural Network Market
Predictive solutions involve the use of historical and current data to anticipate future trends or behaviors, enabling businesses to optimize operations, reduce risks, and enhance performance. Neural network software is instrumental in developing these solutions, using advanced methods such as classification, regression, clustering, and reinforcement learning to process massive datasets and generate highly accurate forecasts.
The effectiveness of neural networks in prediction is increasingly supported by ongoing research and innovation. For instance, in 2023, a team of computer scientists at New York University created a neural network capable of explaining the reasoning behind its predictions—a step toward making AI more transparent and trustworthy. Such advancements not only improve the functionality of predictive systems but also increase user confidence and adoption. As a result, the enhanced capabilities and expanding applications of predictive solutions are fueling the growth of the neural network software market.
Restraint
Limited Expertise and Operational Challenges Hamper Neural Network Software Adoption
Despite its potential, neural network software remains a complex and evolving technology that demands a high level of technical knowledge and hands-on experience. There is currently a shortage of skilled professionals who possess the necessary expertise to design, develop, and manage these systems effectively—especially in developing and underdeveloped regions. This talent gap hinders the widespread adoption and integration of neural network software across industries that could otherwise benefit from its capabilities.
Furthermore, the implementation of neural network software is often met with a range of operational challenges. Concerns around data security, user privacy, ethical use, and the explainability of AI-driven decisions present significant roadblocks for organizations. Many end-users, particularly those operating in highly regulated environments, are hesitant to embrace solutions that lack transparency or pose potential compliance risks. This hesitancy, combined with the slow pace at which some industries adapt to technological change, further restricts the market's momentum. Therefore, the limited global proficiency and gradual response to these operational hurdles continue to act as significant barriers to the full-scale expansion of neural network software.
Opportunity
Cloud-Based Deployment Unlocks Scalable Growth Opportunities for Neural Network Software
A promising opportunity in the neural network software market lies in the increasing adoption of cloud-based neural network software. Unlike traditional on premise systems, cloud-based solutions are accessed over the internet, offering a more flexible and efficient way to develop, deploy, and manage neural networks. These platforms provide several advantages, including scalability, remote accessibility, lower infrastructure costs, and easier maintenance. As organizations increasingly prioritize agility and cost-efficiency, the shift to cloud-based neural network software is becoming more widespread.
This adoption allows users to access powerful AI tools from anywhere at any time, without the need for heavy local infrastructure or dedicated IT teams. Enhanced security features such as encryption, multi-factor authentication, and secure data storage further strengthen the appeal of cloud-based solutions. Moreover, leading neural network frameworks like PyTorch and TensorFlow integrate seamlessly with major cloud platforms such as Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Alibaba Cloud, enabling developers to harness powerful computing resources with ease. As a result, the growing preference for cloud deployment is expected to create substantial growth opportunities for the neural network software market in the coming years.
We have various report editions of Neural Network Software Market, hence please contact our sales team and author directly to obtain/purchase a desired Edition eg, Global Edition, Regional Edition, Country Specific Report Edition, Company Profiles, Forecast Edition, etc. Request for your Free Sample PDF/Online Access.
Competitive Landscape
The neural network software market is highly competitive, with several prominent players dominating due to their extensive technological capabilities, robust R&D investments, and established ecosystems. Leading companies such as Google (TensorFlow), Meta (PyTorch), Microsoft, IBM, and Amazon Web Services (AWS) are at the forefront, offering comprehensive platforms and tools that support large-scale neural network development and deployment. These players benefit from widespread adoption across industries, driven by their open-source contributions, cloud integration, and community support. Their dominance is further reinforced by strategic partnerships, consistent innovation, and the integration of neural network capabilities into broader AI and cloud service offerings.
Recent developments highlight the rapid evolution and competitive intensity within the market. In January 2024, Tesla began distributing its FSD Beta v12 software to customers, marking a significant leap toward fully autonomous driving. (Source: https://www.teslaoracle.com/2024/11/14/tesla-begins-wide-release-of-fsd-12-5-6-3-for-hw4-vehicles-brings-end-to-end-neural-net-across-highways-and-city-streets-combined/) This upgrade replaced over 300,000 lines of explicit C++ code with a unified neural network trained on extensive video data, showcasing Tesla's push to integrate deep learning at the core of its vehicle software. Similarly, in November 2023, Broadcom Inc. launched NetGNT, a neural-network inference engine embedded within its Trident 5-X12 processor. (Source: https://www.signalintegrityjournal.com/articles/3359-broadcom-introduces-industrys-first-switch-with-on-chip-neural-network#:~:text=In%20a%20world%E2%80%99s%20first%20for%20switching%20silicon%2C%20Broadcom,Traffic-analyzer%29%20in%20its%20new%2C%20software-programmable%20Trident%205-X12%20chip.) This innovation allows programmable neural network analysis directly on-chip, enhancing traffic analysis capabilities in networking hardware. These advancements illustrate how both software and hardware companies are investing heavily in neural network technologies, signaling intensified competition and continual innovation in the space.
Top Companies Market Share in Neural Network Software Industry: (In no particular order of Rank)
If any Company(ies) of your interest has/have not been disclosed in the above list then please let us know the same so that we will check the data availability in our database and provide you the confirmation or include it in the final deliverables.
Which Region Dominates the Neural Network Software Market in 2024?
North America
North America continues to dominate the global neural network software market, accounting for XX% of the total revenue share in 2023. This stronghold is primarily driven by the United States, which boasts an advanced technological infrastructure, a robust ecosystem of AI startups and tech giants, and aggressive investments in AI R&D. Key players such as Google (Alphabet Inc.), Microsoft, IBM, and Amazon Web Services (AWS) are headquartered in this region, offering cutting-edge neural network tools and services that fuel innovation across sectors.
A significant contributor to regional growth is the automotive industry, particularly in the U.S., where companies are increasingly adopting neural network software for autonomous driving, predictive maintenance, and vehicle analytics. For Instance, In January 2024, Tesla began rolling out its FSD Beta v12. This version features a unified neural network architecture trained on extensive video datasets, replacing over 300,000 lines of C++ code. (Source: https://paultan.org/2024/03/18/tesla-fsd-beta-v12-using-neural-network-ai-trained-on-real-video-clips-instead-of-pre-programmed-codes/) This strategic shift not only enhances Tesla's self-driving capabilities in urban environments but also showcases how deeply neural networks are being integrated into next-generation mobility solutions. Coupled with North America’s proactive stance on adopting emerging technologies and its network of academic and research institutions, the region is set to maintain its leadership in the neural network software market.
Which Region is Expanding at the Fastest CAGR?
Asia Pacific
The Asia Pacific region is rapidly emerging as the fastest-growing market for neural network software, with countries such as China, Japan, and India driving this expansion. Forecasts indicate that the region is likely to experience the highest compound annual growth rate (CAGR) during the forecast period, fueled by rapid digital transformation, growing AI adoption across industries, and supportive government policies. These nations are investing heavily in building AI infrastructure and promoting innovation through research grants and public-private partnerships.
China’s aggressive investments in AI, combined with its booming tech ecosystem and growing dominance in manufacturing and smart cities, position it as a critical player in the market. Japan, known for its advancements in robotics and automation, and India, with its large talent pool and rising startup activity, are also contributing significantly. Moreover, the growing deployment of AI-powered solutions in sectors like healthcare, finance, retail, and logistics is creating fertile ground for neural network software adoption. In November 2023, Broadcom Inc., though U.S.-based, launched its NetGNT neural-network inference engine in the Trident 5-X12 processor, which is expected to find strong adoption in Asia’s network-heavy markets. (Source: https://www.marketscreener.com/quote/stock/BROADCOM-INC-42668543/news/Broadcom-Inc-Announces-Novel-On-Chip-Neural-Network-Inference-Engine-Called-NetGNT-45476226/) With a blend of favorable demographics, government backing, and industrial digitalization, Asia Pacific is poised to become a global hub for AI innovation and neural network software development.
The current report Scope analyzes Neural Network Software Market on 5 major region Split (In case you wish to acquire a specific region edition (more granular data) or any country Edition data then please write us on info@cognitivemarketresearch.com
The above graph is for illustrative purposes only.
To learn more about geographical trends request the free sample pages.
Get Free Sample
Global Neural Network Software Market Report 2025 Edition talks about crucial market insights with the help of segments and sub-segments analysis. In this section, we reveal an in-depth analysis of the key factors influencing Neural Network Software Industry growth. Neural Network Software market has been segmented with the help of its Component, Type Industry, and others. Neural Network Software market analysis helps to understand key industry segments, and their global, regional, and country-level insights. Furthermore, this analysis also provides information pertaining to segments that are going to be most lucrative in the near future and their expected growth rate and future market opportunities. The report also provides detailed insights into factors responsible for the positive or negative growth of each industry segment.
Based on components, the global neural network software market is bifurcated into neural network software, services, platforms, and other enabling services.
During the projection period, the neural network software segment holds the largest market share. These are typically offered as frameworks or libraries that include pre-built functions and tools essential for developing, training, and deploying neural networks. Frameworks like TensorFlow, PyTorch, Keras, MXNet, and Caffe are widely used by researchers and developers to manage neural network architecture, layer definitions, and parameter tuning processes. Their wide adoption across academic and commercial sectors makes this segment the most dominant in the market.
The above Chart is for representative purposes and does not depict actual sale statistics. Access/Request the quantitative data to understand the trends and dominating segment of Neural Network Software Industry. Request a Free Sample PDF!
The market is segmented into data mining and archiving, analytical software, optimization software, and visualization software.
The analytical software segment is currently dominating the global market. These tools enable complex data analysis using regression, classification, clustering, and other machine-learning techniques. With the increasing use of AI in financial and business analytics, this segment is expected to witness continued growth. For instance, Deep Nexus Inc. launched an AI-powered predictive analytics platform for financial markets, using deep learning neural networks for trading in equities, commodities, and foreign exchange. Such innovations are driving demand for analytical software within the neural network space.
The above Graph is for representation purposes only. This chart does not depict actual Market share.
To learn more about market share request the free sample pages.
Get Free Sample
Based on industry, the market is categorized into BFSI, government and defense, energy and utilities, healthcare, IT, and logistics, retail and e-commerce, and others.
During the projection period, the BFSI (Banking, Financial Services, and Insurance) sector holds the largest market share. This dominance is due to the sector’s early adoption of AI tools for fraud detection, credit scoring, risk analysis, and chatbot-based customer service. For instance, Yes Bank collaborated with Microsoft to deploy an AI-powered virtual assistant, Yes Robot, using Microsoft’s Language Understanding Intelligent Service (LUIS) to offer personalized banking solutions. (Source: https://www.technologyrecord.com/article/yes-bank-creates-yes-robot-using-microsoft-cognitive-services#:~:text=India%E2%80%99s%20Yes%20Bank%20has%20created%20the%20%E2%80%98Yes%20Robot%E2%80%99,with%20more%20than%2025%20types%20of%20banking%20transactions.) Such advancements significantly boost operational efficiency, positioning BFSI as a leading industry in neural network software adoption.
Research associate at Cognitive Market Research
Swasti Dharmadhikari, an agile and achievement-focused market researcher with an innate ardor for deciphering the intricacies of the Service & Software sector. Backed by a profound insight into technology trends and consumer dynamics, she has committed herself to meticulously navigating the ever-evolving terrain of digital Services and software solutions.
Swasti an agile and achievement-focused market researcher with an innate ardor for deciphering the intricacies of the Service & Software sector. Backed by a profound insight into technology trends and consumer dynamics, she has committed herself to meticulously navigating the ever-evolving terrain of digital Services and software solutions.
In her current role, Swasti manages research for service and software category, leading initiatives to uncover market opportunities and enhance competitive positioning. Her strong analytical skills and ability to provide clear, impactful findings have been crucial to her team’s success. With an expertise in market research analysis, She is adept at dissecting complex problems, extracting meaningful insights, and translating them into actionable recommendations, Swasti remains an invaluable asset in the dynamic landscape of market research.
Our study will explain complete manufacturing process along with major raw materials required to manufacture end-product. This report helps to make effective decisions determining product position and will assist you to understand opportunities and threats around the globe.
The Global Neural Network Software Market is witnessing significant growth in the near future.
In 2023, the Neural Network Software segment accounted for noticeable share of global Neural Network Software Market and is projected to experience significant growth in the near future.
The Data Mining and Archiving segment is expected to expand at the significant CAGR retaining position throughout the forecast period.
Some of the key companies Oracle Corporation , Inc. and others are focusing on its strategy building model to strengthen its product portfolio and expand its business in the global market.
Please note, we have not disclose, all the sources consulted/referred during a market study due to confidentiality and paid service concern. However, rest assured that upon purchasing the service or paid report version, we will release the comprehensive list of sources along with the complete report and we also provide the data support where you can intract with the team of analysts who worked on the report.
Disclaimer:
Component | Neural Network Software, Services, Platform, Others |
Type | Data Mining and Archiving, Optimization Software, Analytical Software, Visualization Software |
Industry | BFSI, Government and Defense, Energy and Utilities, Healthcare, Industrial Manufacturing, Media, Telecom and IT, Transportation and Logistics, Retail and E-Commerce, Others |
List of Competitors | Oracle Corporation, Qualcomm Technologies, Inc., SAP SE, IBM Corporation, Microsoft Corporation, Intel Corporation, Google, Inc., Alyuda Research LLC, Neural Technologies Ltd., NVIDIA Corporation, Starmind International AG, Neuralware, Ward Systems Group, Inc |
This chapter will help you gain GLOBAL Market Analysis of Neural Network Software. Further deep in this chapter, you will be able to review Global Neural Network Software Market Split by various segments and Geographical Split.
Chapter 1 Global Market Analysis
Global Market has been segmented on the basis 5 major regions such as North America, Europe, Asia-Pacific, Middle East & Africa, and Latin America.
You can purchase only the Executive Summary of Global Market (2019 vs 2024 vs 2031)
Global Market Dynamics, Trends, Drivers, Restraints, Opportunities, Only Pointers will be deliverable
This chapter will help you gain North America Market Analysis of Neural Network Software. Further deep in this chapter, you will be able to review North America Neural Network Software Market Split by various segments and Country Split.
Chapter 2 North America Market Analysis
This chapter will help you gain Europe Market Analysis of Neural Network Software. Further deep in this chapter, you will be able to review Europe Neural Network Software Market Split by various segments and Country Split.
Chapter 3 Europe Market Analysis
This chapter will help you gain Asia Pacific Market Analysis of Neural Network Software. Further deep in this chapter, you will be able to review Asia Pacific Neural Network Software Market Split by various segments and Country Split.
Chapter 4 Asia Pacific Market Analysis
This chapter will help you gain South America Market Analysis of Neural Network Software. Further deep in this chapter, you will be able to review South America Neural Network Software Market Split by various segments and Country Split.
Chapter 5 South America Market Analysis
This chapter will help you gain Middle East Market Analysis of Neural Network Software. Further deep in this chapter, you will be able to review Middle East Neural Network Software Market Split by various segments and Country Split.
Chapter 6 Middle East Market Analysis
This chapter will help you gain Middle East Market Analysis of Neural Network Software. Further deep in this chapter, you will be able to review Middle East Neural Network Software Market Split by various segments and Country Split.
Chapter 7 Africa Market Analysis
This chapter provides an in-depth analysis of the market share among key competitors of Neural Network Software. The analysis highlights each competitor's position in the market, growth trends, and financial performance, offering insights into competitive dynamics, and emerging players.
Chapter 8 Competitor Analysis (Subject to Data Availability (Private Players))
(Subject to Data Availability (Private Players))
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
Data Subject to Availability as we consider Top competitors and their market share will be delivered.
This chapter would comprehensively cover market drivers, trends, restraints, opportunities, and various in-depth analyses like industrial chain, PESTEL, Porter’s Five Forces, and ESG, among others. It would also include product life cycle, technological advancements, and patent insights.
Chapter 9 Qualitative Analysis (Subject to Data Availability)
Segmentation Component Analysis 2019 -2031, will provide market size split by Component. This Information is provided at Global Level, Regional Level and Top Countries Level The report with the segmentation perspective mentioned under this chapters will be delivered to you On Demand. So please let us know if you would like to receive this additional data as well. No additional cost will be applicable for the same.
Chapter 10 Market Split by Component Analysis 2021 - 2033
The report with the segmentation perspective mentioned under this chapters will be delivered to you On Demand. So please let us know if you would like to receive this additional data as well. No additional cost will be applicable for the same.
Chapter 11 Market Split by Type Analysis 2021 - 2033
The report with the segmentation perspective mentioned under this chapters will be delivered to you On Demand. So please let us know if you would like to receive this additional data as well. No additional cost will be applicable for the same.
Chapter 12 Market Split by Industry Analysis 2021 - 2033
This chapter helps you understand the Key Takeaways and Analyst Point of View of the global Neural Network Software market
Chapter 13 Research Findings
Here the analyst will summarize the content of entire report and will share his view point on the current industry scenario and how the market is expected to perform in the near future. The points shared by the analyst are based on his/her detailed in-depth understanding of the market during the course of this report study. You will be provided exclusive rights to interact with the concerned analyst for unlimited time pre purchase as well as post purchase of the report.
Chapter 14 Research Methodology and Sources
Why Neural Network Software have a significant impact on Neural Network Software market? |
What are the key factors affecting the Neural Network Software and Services of Neural Network Software Market? |
What is the CAGR/Growth Rate of Data Mining and Archiving during the forecast period? |
By type, which segment accounted for largest share of the global Neural Network Software Market? |
Which region is expected to dominate the global Neural Network Software Market within the forecast period? |
Segmentation Level Customization |
|
Global level Data Customization |
|
Region level Data Customization |
|
Country level Data Customization |
|
Company Level |
|
Additional Data Analysis |
|
Additional Qualitative Data |
|
Additional Quantitative Data |
|
Service Level Customization |
|
Report Format Alteration |
|